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Abstract Non-Markovian Lindblad rate equations arise from alternative microscopic in-
teractions such as quantum systems coupled to composite reservoirs, where extra degrees
of freedom mediate the interaction between the system and a Markovian reservoir, as well
as from systems coupled to complex structured reservoirs whose action can be well ap-
proximated by a direct sum of Markovian sub-reservoirs (Budini in Phys. Rev. A 74:053815
2006). The purpose of this paper is two fold. First, for both kinds of interactions we find gen-
eral expressions for the system operator correlations written in terms of the Lindblad rate
propagator. Secondly, we find the conditions under which a quantum regression hypothesis
is valid. We show that a non-Markovian quantum regression theorem can only be granted
in a stationary regime, being a necessary condition the fulfillment of a detailed balance
condition. This result is independent of the underlying microscopic interaction, providing a
criterion for the validity of the regression hypothesis in non-Markovian Lindblad-like mas-
ter equations. As an example, we study the correlations of a two-level system coupled to
different kind of reservoirs.

Keywords Non-Markovian open quantum system dynamics · Quantum regression theorem

1 Introduction

In many areas of physics, one is confronted with the description of small quantum systems
interacting with an uncontrollable environment. This situation is well understood when the
reduced system dynamics follows a (completely positive) Markovian evolution [1–6].

One of the cornerstones of the theory of Markovian open quantum systems is the quan-
tum regression theorem (QRT). This theorem, originally proposed by Lax [7, 8], allows to
calculate multiple-time operators correlation functions from the knowledge of single-time
expectation values, which in turn implies the knowledge of the density matrix evolution
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[4–6]. The importance of this theorem comes from the physical information contained in
the operator correlations. In fact, in a stationary regime, it is possible to relate the Fourier
transform of these objects with the spectrum of the decay process [3]. Furthermore, in ra-
diant systems, the statistic of the scattered field can be described through system operator
correlations [4–6].

Another central cornerstone of non-equilibrium quantum Markovian dynamics is the
quantum detailed balance condition, which imposes severe symmetry properties on the oper-
ator correlations structure. While in classical stochastic processes this condition has a clear
meaning in terms of transitions between the available states of the system [9, 10], in quan-
tum dissipative systems this condition relies in the time reversal property of the underlying
stationary microscopic Hamiltonian evolution [11–17]. The breakdown of this condition has
direct experimental implications [18].

Although the applicability of the Markovian approximation range over many physical
situations [1–6], there exist several real systems whose dynamics present strong departures
from it. Remarkable examples are the presence of 1/f [19, 20] and random telegraph noise
[21, 22] in solid-state qubits, transport through interacting electron systems [23], anomalous
intermittent fluorescence in nanocrystal quantum dots [24–31], band gap materials [32, 33],
etc.

Consistently with the existence of experimental situations that can not be described by a
Markovian evolution, in the context of different approaches recent effort was dedicated to
characterize non-Markovian operator correlation dynamics [34–38].

While the description of non-Markovian processes may depends on each specific situa-
tion, there exists an increasing interest in describing these kinds of dynamics by introduc-
ing memory contributions in standard Lindblad evolutions [39–51]. These non-Markovian-
Lindblad-like master equations provide a simple framework for describing strong non-
Markovian effects. Nevertheless, these equations do not have associated a rule for calculat-
ing system operator correlations. Clearly, these objects can only be well defined by starting
from a full Hamiltonian microscopic description.

In Refs. [52, 53] we have demonstrated that a broad class of non-Markovian Lindblad-
like master equations can be derived from specific microscopic interactions, such as systems
interacting with composite reservoirs, where extra degrees of freedom modulates the inter-
action with a Markovian reservoir and also from complex environments whose action can
be approximated by a direct sum of Markovian sub-reservoirs (generalized Born-Markov
approximation). In both cases, the density matrix evolution can be written in terms of a set
of auxiliary states whose evolution involve Lindblad contributions with local coupling be-
tween all of them, resembling the structure of a classical rate equation. These “Lindblad
rate equations” has been applied in the description of specific experimental situations such
as the radiation pattern of fluorescent systems coupled to complex nano-environments [28–
31]. Furthermore, they also arise when modeling dichotomous noise in solid-state qubits
[21, 22], in the formulation of Bloch-Boltzman equations [54], in alternative consistent
quantum measurement theories [55] and in the description of closed system-environment
nano-arrangements [56, 57]. Derivations from pure theoretical conditions have been also
explored [58, 59] and applied in the description of non-Markovian spin baths [60].

The goal of this paper is two fold. First, for both kinds of microscopic interactions that
lead to a Lindblad rate equation we derive general expressions for the system operator corre-
lations. This result is of fundamental importance for calculating physical observable defined
in terms of operator correlation functions. Secondly, on the base of the previous result, the
conditions under which a non-Markovian QRT can be formulated is explored. We find that
the validity of the regression hypothesis is parallel to the fulfillment of a detailed balance
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condition. As this result is independent of the underlying microscopic interaction, it pro-
vides a necessary condition for the validity of the regression hypothesis in time-convolution
Lindblad-like evolutions.

The paper is outlined as follows. In Sect. 2, the definition and microscopic derivation
of Lindblad rate equations are reviewed. The dual operators evolution is also introduced.
In Sect. 3, starting from a full microscopic description, we derive the expressions for the
operator correlations. In Sect. 4 we find the conditions under which a non-Markovian QRT
can be formulated. In Sect. 5 we relate the fulfillment of the QRT in a stationary regime
with the microreversibility property of the dissipative dynamics. In Sect. 6 we exemplify our
theoretical results by analyzing the correlation dynamics of a two-level system embedded in
different non-Markovian environments. In Sect. 7 we give the conclusions.

2 Lindblad Rate Equations

In this approach [52, 53], the density matrix of an open quantum system can be written as

ρS(t) =
∑

R

ρR(t), (1)

where the auxiliary states ρR(t) evolve as

d

dt
ρR(t) = −i

�
[Heff

R ,ρR(t)] − {DR,ρR(t)}+ + FR[ρR(t)]

−
∑

R′
R′ �=R

{DR′R,ρR(t)}+ +
∑

R′
R′ �=R

FRR′ [ρR′(t)]. (2)

The effective Hamiltonian H
eff

R = HS + HR is defined in terms of the system Hamiltonian
HS and a R-dependent shift contribution HR, which is induced by the interaction with the
reservoir. On the other hand, the dissipative diagonal superoperator contributions are de-
fined by

DR = 1

2

∑

α,γ

a
αγ

R V †
γ Vα, FR[•] =

∑

α,γ

a
αγ

R Vα • V †
γ , (3)

while the non-diagonal contributions reads

DR′R = 1

2

∑

α,γ

a
αγ

R′RV †
γ Vα, FRR′ [•] =

∑

α,γ

a
αγ

RR′Vα • V †
γ . (4)

With {Vα}, we denote an arbitrary set of system operators. Then, the indexes α and γ run
from one up to (dimHS)

2, where dimHS is the system Hilbert space dimension. The (pos-
itive defined) matrices a

αγ

R and a
αγ

R′R characterize the rate constants of the dissipative evolu-
tion. The initial conditions of (2) read ρR(0) = PRρS(0), where the definition of the positive
weights PR depend on each specific environment and satisfy

∑
R PR = 1. The labeling in-

dexes R run over an arbitrary domain related to the specific environment properties.
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2.1 Non-Markovian Density Matrix Evolution

While the auxiliary states ρR(t) evolves under a local in time evolution (Markovian), the
system density matrix ρS(t) is characterized by a non-Markovian dynamics. In order to get
its evolution, we write the evolution equation (2) as

d |ρ(t))

dt
= L̂H |ρ(t)) + M̂ |ρ(t)) . (5)

In order to simplify the notation, we introduced the column vector |ρ) ≡ (ρ1, ρ2, . . . ,

ρR, . . .)T, where T denote a transposition operation. Furthermore, the hat symbol denote
matrices in the R-space whose elements are superoperators acting on the (auxiliary) system
states. The Hamiltonian contribution L̂H is defined by its matrix elements

(L̂H )RR′ [•] = −(i/�)[HS,•]δRR′ , (6)

while the matrix elements of M̂ reads

M̂RR′ [•] = δR,R′

{−i

�
[HR,•] − {DR,•}+ + FR[•]

}

+ FRR′ [•] − δR,R′
∑

R′′
R′′ �=R

{DR′′R,•}+. (7)

With this notation, the initial condition reads |ρ(0)) = |P )ρS(0), where we have introduced
the vector |P ) = (P1,P2, . . . ,PR, . . .)T. The system state (1) reads ρS(t) = (1|ρ(t)), where
|1) is the row vector with elements equal to one. Notice that the normalization of the statis-
tical weights it written as (1|P ) = (P |1) = 1.

From (5), the system state can be trivially written in the Laplace domain as

ρS(u) =
(

1

∣∣∣∣
1

u − (L̂H + M̂)

∣∣∣∣P
)

ρS(0), (8a)

≡ (1|Ĝ(u)|P )ρS(0), (8b)

where u is the conjugate variable. Multiplying the right term by the identity operator written
in the form 1/(1|Ĝ(u)[u − (L̂H + M̂)]|P ), it is straightforward to arrive to the non-local
evolution

dρS(t)

dt
= LH [ρS(t)] +

∫ t

0
dτK(t − τ)[ρS(τ )], (9)

where LH [•] = −(i/�)[HS,•], and the system-superoperator-kernel K(t) is defined in the
Laplace domain by

K(u)[•] = (1| Ĝ(u) |P )−1 (1| Ĝ(u)M̂ |P ) [•]. (10)

In general, depending on the underlying structure, the evolution equation (9) involves many
different memory functions, each one associated to a Lindblad contribution.
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2.2 Operators Dual Evolution

Associated to the density matrix evolution equation (9), it is possible to define a dual evolu-
tion, where the time dynamics is carried out by the system operators. As in standard Lindblad
equations [1], the relation

TrS{ρS(t)AS} = TrS{ρS(0)AS(t)}, (11)

where AS is an arbitrary system operator, allows to define the operators dual evolution. We
write the system operator as

AS(t) =
∑

R

PRAR(t) = (P |A(t)), (12)

where the auxiliary operators AR(t) define the vector |A) ≡ (A1,A2, . . . ,AR, . . .)T. By us-
ing the relation (11), their evolution is defined as

d |A(t))

dt
= L̂#

H |A(t)) + M̂# |A(t)) , (13)

with AR(0) = AS(0). The dual Liouville matrix superoperator reads L̂#
H = −L̂H and the

matrix elements of M̂# are given by

M̂#
RR′ [•] = δR,R′

{
i

�
[HR,•] − {D#

R,•}+ + F #
R[•]

}

+ F #
RR′ [•] − δR,R′

∑

R′′
R′′ �=R

{D#
R′′R,•}+, (14)

with the definitions

D#
R = DR, F #

R[•] =
∑

α,γ

a
αγ

R V †
γ • Vα, (15)

while the non-diagonal contributions read

D#
R′R = DR′R, F #

RR′ [•] =
∑

α,γ

a
αγ

RR′V
†
γ • Vα. (16)

The non-Markovian evolution of AS(t) follows from (12) and (13). By writing the dy-
namics in the Laplace domain as

AS(u) =
(

P

∣∣∣∣
1

u − (L̂#
H + M̂#)

∣∣∣∣1
)

AS(0), (17a)

≡ (P | Ĝ#(u)|1)AS(0), (17b)

it is possible to obtain

dAS(t)

dt
= L#

H [AS(t)] +
∫ t

0
dτK#(t − τ)[AS(τ)], (18)

where L#
H = −LH and the superoperator kernel K# is defined by

K#(u)[•] = (P | Ĝ#(u) |1)−1 (P | Ĝ#(u)M̂# |1) [•]. (19)
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2.3 Microscopic Derivation

Lindblad rate equations arise from different kind of microscopic interactions. Here, in order
to define the notation of the next sections, we review the derivation from composite bipar-
tite reservoirs. In Appendix A we review the derivation from a generalized Born-Markov
approximation [52, 53].

Bipartite composite reservoirs refers to the situation where there exist extra degrees of
freedom U that modulate the interaction (the entanglement) between a system S and a
Markovian reservoir B . The total microscopic dynamics is defined by the Hamiltonian

HT = HS + HU + HB + HI . (20)

HS represent the system Hamiltonian. HB is the Hamiltonian of the Markovian environment.
On the other hand, HU is the Hamiltonian of the extra degrees of freedom. The interaction
Hamiltonian HI couples the three involved parts. The total density matrix ρT (t) evolves as

dρT (t)

dt
= −i

�
[HT ,ρT (t)]. (21)

The system states follows from ρT (t) after tracing out the degrees of freedom of B and U

ρS(t) = TrUB{ρT (t)}, (22a)

= TrUB{ρSU(t) ⊗ ρB}, (22b)

= TrU {ρSU(t)}. (22c)

For writing the second line, we assume that the interaction HI weakly couples the Markovian
reservoir B with the systems U and S. Therefore, its degrees of freedom can be eliminated
through a standard Born-Markov approximation [1–6], which allows to write the total den-
sity matrix as the external product between the stationary bath state ρB and the state ρSU (t)

corresponding the composite system SU .
By introducing a complete basis {|R〉} in the Hilbert space of U , from (22), the system

density matrix reads

ρS(t) =
∑

R

〈R|ρSU (t)|R〉, (23a)

≡
∑

R

ρR(t) = (1|ρ(t)). (23b)

Then, we notice that the sum structure equation (1) have a trivial interpretation in terms of
a trace operation. Each state ρR correspond to the system dynamics given that the system U

is in the state |R〉.
As the reservoir B can be traced-out in a Born-Markov approximation, the evolution of

ρSU (t) can be written in terms of a standard Markovian Lindblad equation, (d/dt)ρSU (t) =
LSU [ρSU (t)]. Then, the evolution of each auxiliary state ρR(t) reads

dρR(t)

dt
= 〈R|LSU [ρSU (t)]|R〉, (24a)

=
∑

R′
L̂RR′ρR′(t), (24b)
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where L̂RR′ define a Lindblad rate equation, i.e.,

L̂ = L̂H + M̂. (25)

Here, L̂H and M̂ are defined by (6) and (7) respectively. We remark that the possibility of
writing the evolution of ρR(t) as a Lindblad rate equation impose severe symmetry condi-
tions on the superoperator LSU (or equivalently on the interaction Hamiltonian HI), which
must not to couple the coherences and populations of U [52, 53] (see for example Sect. 6.2
and the interaction Hamiltonian in Ref. [31]).

When the system S and the extra degrees of freedom U begin in a uncorrelated state,
ρSU (0) = ρS(0)⊗ρU(0), where ρS(0) and ρU(0) are arbitrary initial states for both systems,
from (23) the initial conditions of the auxiliary states reads ρR(0) = PRρS(0), where

PR = 〈R|ρU(0)|R〉. (26)

Therefore, here the weights PR are defined by the initial populations of U .

3 Operator Correlations

Operators correlations can only be well defined and calculated by starting from a full micro-
scopic dynamics. Here, we determine the corresponding expressions for the case of bipartite
composite reservoirs. In Appendix A we arrive to the same expressions for the case of com-
plex structured reservoirs described in a generalized Born-Markov approximation.

Let us introduce a complete set of operators {Aμ} of the system, collected into a vector A,

and consider the microscopic expression for expectation values

A(t) ≡ TrSUB[A(t)ρT (0)], (27)

as well as for the correlation functions

O(t)A(t + τ) ≡ TrSUB[O(t)A(t + τ)ρT (0)], (28)

where O(t) is an arbitrary system operator. The time dependence of the operators refers
to a Heisenberg representation with respect to the total Hamiltonian (20), i.e., O(t) =
exp[(i/�)tHT ]O(0) exp[−(i/�)tHT ].

From (22) and (23), trivially we can write the expectation values as an sum of the aver-
ages corresponding to each state ρR(t), i.e.,

A(t) =
∑

R

TrS[AρR(t)] ≡
∑

R

A(t)R (29a)

= (
1|A(t)

)
. (29b)

In order to workout the operator correlations, we first express the total initial density ma-
trix as ρT (0) = exp[(i/�)tHT ]ρT (t) exp[−(i/�)tHT ]. Then, by using the cyclic property
of the trace operation, from (28) we obtain

O(t)A(t + τ) = TrS{A TrUB [OSUB(τ)]}, (30)
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where the operator OSUB(τ) satisfies

d

dτ
OSUB(τ ) = − i

�
[HT ,OSUB(τ )], (31)

with OSUB(τ)|τ=0 = ρT (t)O(0) = ρSU (t)O(0) ⊗ ρB , where the last equality follows from
the Markovian property of the reservoir B . As the operator OSUB(τ) evolves as the total
density matrix ρT (t), (21), the dynamics of TrUB [OSUB(τ)] can also be written as a Lindblad
rate equation, delivering

TrUB [OSUB(τ)] =
∑

RR′
(eτ L̂)RR′ρR′(t)O, (32a)

= (
1|eτ L̂|ρ(t)O

)
, (32b)

where L̂ is defined by (25). From (30), it follows

O(t)A(t + τ) =
∑

RR′
TrS{A(eτ L̂)RR′ [ρR′(t)O]},

≡
∑

R

O(t)A(t + τ)R,

= (
1|O(t)A(t + τ)

)
. (33)

This equation give us the desired expression for the operator correlations. It is written in
terms of the generator L̂RR′ of the Lindblad rate evolution equation (2). Higher correlations
operators can also be obtained in a similar way. For example, using the same steps as before,
for arbitrary system operators O1 and O2, it is possible to obtain

O1(t)A(t + τ)O2(t) =
∑

RR′
TrS{A(eτ L̂)RR′ [O2ρR′(t)O1]}

≡
∑

R

O1(t)A(t + τ)O2(t)R,

= (
1|O1(t)A(t + τ)O2(t)

)
. (34)

The operators correlations take a simple form when expressed in term of the dual super-
operators introduced in Sect. 2.2. By using the property

TrS{(A|L̂|B)} = TrS{(B|L̂#|A)}, (35)

valid for arbitrary R-vectors (of operators) |A) and |B), and where

L̂# = L̂#
H + M̂#, (36)

from (33), we get

O(t)A(t + τ) = TrS{A(1|eτ L̂|ρ(t)O)},
= TrS{(A|eτ L̂|ρ(t)O)},
= TrS{(ρ(t)O|eτ L̂# |A)}, (37)
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while from (34) it follows

O1(t)A(t + τ)O2(t) = TrS{(A|eτ L̂|O2ρ(t)O1)},
= TrS{(O2ρ(t)O1|eτ L̂# |A)},
= TrS{(ρ(t)O1|[eτ L̂# |A)]O2}. (38)

4 Quantum Regression Theorem

For Markovian master equations the QRT [4–6] provides a direct relation between the time
evolution of the expectation values of system observable and their corresponding correlation
functions. Here, based on the results of the previous section, we will explore the possibil-
ity of formulating an equivalent relation when the system evolution is defined through a
Lindblad rate equation. Taking in account the results of Appendix A, the next results ap-
ply for both underlying microscopic interactions, i.e., composite bipartite reservoirs and the
generalized Born-Markov approximation.

4.1 Expectation and Correlation Evolutions

From the previous results, independently of the microscopic interaction, from (29) and (33),
we can write the evolution of both, expectation values and operator correlations as

d

dt
A(t) =

∑

RR′
M̂RR′A(t)R′ , (39a)

d

dτ
O(t)A(t + τ) =

∑

RR′
M̂RR′O(t)A(t + τ)R′ . (39b)

With blackboard bold letters, we denote matrices acting on the indexes of the vector (of
system operators) A. The hat symbol denotes their dependence on the R-indexes. For each
pair of indexes R and R′, the set of matrices M̂RR′ are defined by the relation

∑

R

TrS{AL̂RR′ [O]} =
∑

R

M̂RR′ TrS{AO}, (40)

where L̂RR′ is the generator of the Lindblad rate evolution, (25).
As for the density matrix, it is possible to get a closed non-Markovian evolution for

the expectation values and correlations. First, from (39a), the expectation values can be
expressed in the Laplace domain as

A(u) = (1|Ĝ(u)|P )A(0), (41)

while from (39b) the correlations read

O(t)A(t + τ) = (1|Ĝ(u)|O(t)A(t)), (42)

where we have introduced the propagator Ĝ(u) ≡ (u + M̂)−1. After introducing in (41) the
identity operator in the form A(u) = (1|Ĝ(u)(u + M̂)|P )(1|Ĝ(u)|P )A(0), we arrive to the
closed evolution

d

dt
A(t) = −

∫ t

0
dt ′K(t − t ′)A(t ′). (43)
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Using a similar procedure, from (42), for the correlations we get

d

dτ
O(t)A(t + τ) = −

∫ τ

0
dt ′ K(τ − t ′)O(t)A(t + t ′) + I(t, τ ). (44)

The matrix kernel K(t) fulfills the equation

K(u) = (1|Ĝ(u)|P )−1(1|Ĝ(u)M̂|P ), (45)

while the inhomogeneous term I(t, τ ) is defined by

I(t, u)=(1|Ĝ(u)|P )−1(1|Ĝ(u)|O(t)A(t)) − (1|O(t)A(t)). (46)

Besides that (39b) has the same structure as (39a), the inhomogeneous term is only present
in the correlation evolution, (44). I(t, τ ) arise because, in contrast with the expectation evo-
lutions, the initial condition of each contribution in (39b), O(t)A(t)R = TrS[OAρR(t)], de-
pend on the auxiliary states ρR(t). In contrast, as (39a) is defined with initial conditions fixed
at t = 0, its initial condition A(0)R = TrS{AρR(0)] = PR TrS{AρS(0)] does not depends on
the auxiliary states, which in turn implies that the inhomogeneous term is not present in
the averaged evolution equation (43). Consistently, notice that I(t, τ ) always vanishes at the
initial time, i.e., I(0, τ ) = 0.

Due to the inhomogeneous term I(t, τ ), the QRT is not fulfilled in general. A QRT is
only valid when this term vanish, which leads to the condition

(1|Ĝ(u)|O(t)A(t))
QRT= (1|Ĝ(u)|P )(1|O(t)A(t)). (47)

We realize that the previous equality is always satisfied for Markovian dynamics, i.e., when
the superoperator L̂RR′ only involve a unique diagonal Lindblad contribution, L̂RR′ = δRR′L
(with arbitrary unitary and dissipative terms). In fact, in this situation at any time it is sat-
isfied ρR(t)/PR = ρS(t), which immediately implies the validity of (47) at all times recov-
ering the QRT for Markovian dynamics [4–6]. In this case, the expectation and correlation
evolutions are defined by local in time evolutions, (43) and (44) with K(t) = δ(t)K and
I(t, τ ) = 0.

In the general non-Markovian case, L̂RR′ �= δRR′L, the QRT is not valid. Nevertheless,
we note that “a non-Markovian QRT can be asymptotically valid if the states

ρ∞
R ≡ lim

t→∞
ρR(t)

TrS[ρR(t)] (48a)

do not depend on index R and the stationary condition

PR = P ∞
R ≡ lim

t→∞ TrS[ρR(t)] (48b)

is satisfied.” In fact, under these conditions it follows limt→∞ |O(t)A(t)) =
limt→∞ TrS{O(0)A(0)|ρ(t))} = limt→∞ O(t)A(t)|P ∞), and then condition equation (47)
is automatically satisfied. However, if the asymptotic states ρ∞

R depends on R and/or
PR �= P ∞

R , the inhomogeneous term will contribute at all times, even in the asymptotic
regime, and the QRT is invalidated. The same condition is valid for higher operators corre-
lations.
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In the context of bipartite reservoirs (Sect. 2.3), the condition equation (48a) guarantees
that in the stationary regime the system S and the extra degrees of freedom U are statis-
tically uncorrelated. Furthermore, (48b) implies that at the initial time, the system U is in
its stationary state, i.e., ρU(0) = ρU(∞). On the other hand, we notice that (48b) is always
satisfied in diagonal Lindblad rate equations, i.e., equation (2) with a

αγ

RR′ = 0.

4.2 Non-Markovian Dynamics

The evolution equations (43) and (44) can be integrated in the Laplace domain. For the
expectation values we get

A(t) = T(t)A(0), (49a)

while for the correlations it follows

O(t)A(t + τ) = T(τ )O(t)A(t) + F(t, τ ). (49b)

The non-Markovian propagator is defined in the Laplace domain as

T(u) = 1

u + K(u)
, (50)

and the extra inhomogeneous term is

F(t, τ ) = (1|Ĝ(τ )|O(t)A(t)) − (1|Ĝ(τ )|P )(1|O(t)A(t)). (51)

The previous expressions explicitly show that the departure from the condition equation (47)
measures the size of the dynamical effects that can not be captured by assuming valid the
QRT. In fact, the QRT is fulfilled only when F(t, τ ) vanishes. On the other hand, from (49a)
and (49b) it is immediate to understand the meaning of the validity of the non-Markovian
QRT only in the stationary regime: when the conditions (48) are fulfilled, the propagator of
the expectation values and the propagator of the stationary correlations are exactly the same,
i.e., T(τ ), while the inhomogeneous term cancel identically, F(∞, τ ) = 0.

4.3 Discussion

We remark that the validity of the regression hypothesis for quantum systems is restricted
to weak system-environment interactions [61–64]. In the strong coupling regime the gen-
eralization of the classical Onsager hypothesis [65] is the fluctuation dissipation theorem
[61–63]. These well known results may give the impression that the QRT is only valid when
a Markovian approximation applies [66]. Here, in contrast we demonstrated that the QRT
might be extended to strong non-Markovian system dynamics. There is not any contradic-
tion in our formalism. This conclusion is evident after noting that non-Markovian Lindblad
rate equations also arise from weak system-environment interactions. This property guar-
antees the consistency of our approach with all previous results. On the other hand, from
Sect. 3, it is simple to realize that the operator correlations and in consequence their associ-
ated evolutions rely in the same calculation steps used to derive the density matrix evolution.
Therefore, their range of validity is evidently the same.
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5 Detailed Balance Condition

In the previous section we have demonstrated that the non-Markovian QRT can be assumed
valid in an asymptotic regime if the stationary states ρ∞

R does not depends on the index R

[see (48a)] and the initial weights are stationary, i.e., PR = P ∞
R [see (48b)]. Here, we demon-

strate that these constraints can be associated with a quantum detailed balance condition
[11–17], which in turn is related with the microreversibility of the underlying microscopic
dynamics [11].

While the classical detailed balance condition has a clear interpretation in terms of the
available stationary transitions of a stochastic system [9], for quantum dynamics this con-
dition is defined in terms of the time reversal property [11] of the stationary system-bath
dynamics. It can be written as an statement of time-symmetry of the stationary operator
correlations [11–15]

lim
t→∞ O(t + τ)A(t) = lim

t→∞ Ã(t + τ)Õ(t), (52)

where Õ(t) and Ã(t) represent time-reversed operators [67].
From (38), the left hand side term of (52) can be written as

lim
t→∞O(t + τ)A(t) = TrS{A(ρ∞|eτ L̂# |O)}, (53)

where |ρ∞) ≡ limt→∞ |ρ(t)), and the dual superoperator L̂# is defined by (36). Furthermore,
from (38), the right hand side of (52) follows as

lim
t→∞ Ã(t + τ)Õ(t) = TrS{(Õρ∞|eτ L̂# |Ã)},

= TrS{(Ã|eτ L̂|Õρ∞)},
= TrS{Ã(1|eτ L̂|˜̃ρ∞O)},

where we have used (35) and the property ÃB = B̃ Ã, valid for arbitrary operators A and B .
By using the time reverse invariance of the trace operation, we can write

lim
t→∞ Ã(t + τ)Õ(t) = TrS{

������������

(Ã|eτ L̂|˜̃ρ∞O)},

= TrS{A
�����������

(1|eτ L̂|˜̃ρ∞O)},
= TrS{A(1|eτ

˜̂L|ρ̃∞O)}, (54)

where we have introduced the superoperator ˜̂L [11–15] defined by
����������

exp[τ L̂]|O) =
exp[τ˜̂L]|Õ). Then, from (53) and (54), the microreversibility condition equation (52) im-
plies

TrS{A[(ρ∞|eτ L̂# |O) − (1|eτ
˜̂L|ρ̃∞O)]} = 0. (55)

As the system operators A and O are arbitrary, it follows

(ρ∞|eτ L̂# |•) = (1|eτ
˜̂L|ρ̃∞•). (56)
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By demanding the validity of this condition at all times τ , one arrive to the equivalent con-
ditions

ρ∞
S = ρ̃∞

S , (57a)

(ρ∞|L̂#|•) = (1|˜̂L|ρ̃∞•), (57b)

where ρ∞
S ≡ limt→∞ ρS(t).

The conditions (57) [or equivalently (56)] guaranty the fulfillment of the microre-
versibility condition equation (52). These constraints are written in terms of the generator
L̂ = L̂H + M̂ [(25)] of the time evolution of the Lindblad rate dynamics and in general can
not be written in terms of the superoperators that define the non-Markovian density matrix
evolution equation (9), i.e., in terms of LH + K(u). Nevertheless, when the conditions that
guaranty the validity of the “non-Markovian QRT” are valid, from (56) it follows

ρ∞
S (P ∞

R |eτ L̂# |1)[•] = (1|eτ
˜̂L|P ∞

R )[ρ̃∞
S •], (58)

where we have used that |ρ∞) = ρ∞
S |P ∞

R ), i.e., (48a). Furthermore, by using the stationary
condition PR = P ∞

R [see (48b)], we realize that the right and left hand sides of (58) can be
expressed in terms of the density matrix and operator propagators respectively, i.e., (8) and
(17). Then, by demanding the fulfillment of (58) at all times τ we can write

ρ∞
S = ρ̃∞

S , (59a)

ρ∞
S {L#

H +K#(u)}[•] = {L̃H + K̃(u)}[ρ∞
S •]. (59b)

We notice that a similar equation also arises when formulating the detailed balance condi-
tion for non-Markovian classical Fokker-Planck equations [14, 15]. Here, K#(u) is defined
by (19) while K̃(u) follows from (10) after replacing all superoperators by their associated
time-reverse expressions.

In contrast to the previous conditions [see (57)], (59) does not depends on the underlying
dynamics that lead to the non-Markovian system evolution. In fact, it only depends on the
superoperator LH +K(u) that defines the density matrix evolution, (9). In this way, a general
relation between the “non-Markovian QRT” and the non-Markovian quantum detailed bal-
ance condition can be established. We conclude that, “a necessary condition for the validity
of the non-Markovian QRT in the stationary regime is the fulfillment of the non-Markovian
quantum detailed balance conditions (59).” As we will show in the next examples, while
the fulfillment of (59) guarantees the validity of the condition equation (48a), it does not
guarantees the stationary condition (48b). On the other hand, from the previous derivation,
it is simple to realize that the relation between the detailed balance condition and the QRT
does not apply to quantum Markovian evolutions.

6 Examples

Here, we exemplify our theoretical results by studying a two-level system whose dissipa-
tive dynamics can be written in terms of different Lindblad rate evolutions. First, we ana-
lyze the case of a diagonal equation [see (2) with {aαγ

R′R} = 0] representing the action of a
complex thermal reservoir. The influence of an external field on the validity of the QRT is
analyzed. Secondly, we study the validity of the QRT in a dispersive non-diagonal Lindblad
rate equation.
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6.1 Diagonal Lindblad Rate Equation

The Hamiltonian of the system is given by

HS = �ωA

2
σz + Hext , (60)

where �ωA is the difference of energy between the two levels, denoted by |±〉, and σz is the
z-Pauli matrix. Hext represent an external perturbation. The diagonal Lindblad rate equation
reads

dρR(t)

dt
= LH [ρR(t)] + γRLth[ρR(t)] + γd

2
Ld [ρR(t)]}, (61)

with LH [•] = −(i/�)[HS,•]. We take an arbitrary set {γR,PR} of diagonal rates and initial
weights. On the other hand, the superoperator Lth is defined by

Lth[•] = 1 + nth

2
([σ,•σ †] + [σ•, σ †])

+ nth

2
([σ †,•σ ] + [σ †•, σ ]). (62)

Here, σ † and σ are the raising and lowering operators acting on the states |±〉. The dimen-
sionless constant nth defines the temperature T of the environment as exp[−�ωA/kT ] =
nth/(nth + 1), where k is the Boltzmann constant. In (61), we have also considered the ac-
tion of an extra Markovian dispersive environment which is introduced through the Lindblad
superoperator

Ld [•] = ([σz,•σz] + [σz•, σz])/2, (63)

and the single rate γd . For nth = 0, (61) recover the dynamics analyzed in Refs. [28–30].

6.1.1 Free Decay Dynamics

First we analyze the case without the external perturbation, i.e., Hext = 0.

6.1.1.1 Non-Markovian Density Matrix Evolution In an interaction representation with
respect to �ωAσz/2, from (61) the density matrix evolution equation (9) can be written as
dρS(t)/dt = ∫ t

0 dτK(t − τ)[ρS(τ )], with the superoperator

K(u)[•] = 1

1 + 2nth

k‖(u)Lth[•] + k′
⊥(u)

2
Ld [•]. (64)

The memory kernel functions are defined in the Laplace domain by

k‖(u) =
(

P

∣∣∣∣
γ‖

u + γ‖

)(
P

∣∣∣∣
1

u + γ‖

)−1

, (65a)

k⊥(u) =
(

P

∣∣∣∣
γ⊥

u + γ⊥

)(
P

∣∣∣∣
1

u + γ⊥

)−1

, (65b)

with k′
⊥(u) = k⊥(u) − k‖(u)/2. For shortening the notation, we used the R-vector notation

|f (γ )) ≡ (f (γ1), f (γ2), . . . , f (γR), . . .)T, with the rates γ‖R ≡ γR(1 + 2nth) and γ⊥R ≡
γ‖R/2 + γd .
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6.1.1.2 Quantum Detailed Balance Condition In order to check the condition (59), we
note that the evolution defined by (64) leads to the stationary state, ρ∞

S = limt→∞ ρS(t),

ρ∞
S = Π

eq
+ |+〉〈+| + Π

eq
− |−〉〈−|, (66)

where the stationary populations Π
eq
+ and Π

eq
− are defined by Π

eq
+ /Π

eq
− = nth/(nth + 1) and

Π
eq
+ + Π

eq
− = 1. Due to the time reversal invariance of Hamiltonian eigenvectors this state

satisfies ρ̃∞
S = ρ∞

S . Then, it is easy to prove that (59) is satisfied identically.

6.1.1.3 Quantum Regression Theorem As the Lindblad rate equation (61) is diago-
nal (the set of states {ρR(t)} are not coupled between them) at all times it is satisfied
PR = TrS{ρR(t)}, which implies that the condition (48b) is trivially fulfilled. In this case,
the fulfillment of the quantum detailed balance condition (59) guarantees the validity of
the QRT in the stationary regime. Consistently, the normalized stationary states of (61)
must not depend on R [condition equation (48a)]. In fact, it is simple to prove that
limt→∞{ρR(t)/TrS[ρR(t)]} = ρ∞

S .

6.1.1.4 Expectation Values and Operator Correlations The density matrix evolution de-
fined by (64) is equivalent to the non-Markovian Bloch equation

dSX(t)

dt
= −

∫ t

0
dτk⊥(t − τ)SX(τ), (67a)

dSY (t)

dt
= −

∫ t

0
dτk⊥(t − τ)SY (τ ), (67b)

dSZ(t)

dt
= −

∫ t

0
dτk‖(t − τ)[SZ(τ) − S∞

Z ], (67c)

where Sj (t) ≡ TrS{ρS(t)σj } are the expectation values of the Pauli matrices σj , and S∞
Z ≡

Π
eq
+ − Π

eq
− . In order to deal with diagonal matrices, we analyze the operator correlations

in the base A = {σx, σy, (σz − S∞
Z ), I}, where I is the (2 × 2) identity matrix. Then, the

propagator for operator expectation values, A(t) = T(t)A(0), can be written as

T(t) = diag{h⊥(t), h⊥(t), h‖(t),1}. (68)

Here, we defined the functions h⊥(u) = [u+k⊥(u)]−1and h‖(u) = [u+k‖(u)]−1, which can
be written in the time domain as

h⊥(t) = (P | exp[−γ⊥t]), h‖(t) = (P | exp[−γ‖t]). (69)

On the other hand, the extra inhomogeneous term [see (51)] that defines the operator corre-
lations, O(t)A(t + τ) = T(τ )O(t)A(t) + F(t, τ ), can be written as

F(t, τ ) = T⊥(t, τ )F⊥ + T‖(t, τ )F‖, (70)

where we have defined the vectors

F⊥ = TrS[OAρ−
S (0)], (71a)

F‖ = TrS[OA{ρ+
S (0) − ρ∞

S }], (71b)
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with ρ±
S (0) ≡ [ρS(0) ± σzρS(0)σz]/2.1 We note that F‖ measure the departure of the initial

populations from the equilibrium values Π
eq
± , while F⊥ measure the departure of the initial

system coherences (in the base |±〉) from their null stationary value. On the other hand, the
time dependence of F(t, τ ) is defined by the matrices

T⊥(t, τ ) = diag{f⊥(t, τ ), f⊥(t, τ ), f0(τ, t),0}, (72a)

T‖(t, τ ) = diag{f0(t, τ ), f0(t, τ ), f‖(t, τ ),0}, (72b)

with the definitions

f⊥(t, τ ) = h⊥(t + τ) − h⊥(t)h⊥(τ ), (73a)

f‖(t, τ ) = h‖(t + τ) − h‖(t)h‖(τ ), (73b)

f0(t, τ ) = e−τγd f‖(t, τ/2). (73c)

These functions measure the transient departure from the validity of the QRT. Only when the
decay behaviors are exponential, they vanish identically and the QRT is valid at all times.
This situation only happens when the evolution is Markovian. On the other hand, with the
previous definitions, it is easy to check that (70) satisfies lim t→∞F(t, τ ) = 0, i.e., in the
non-Markovian case the QRT is only valid for calculating stationary correlations.

6.1.1.5 Transient Decay Behaviors In order to illustrate the previous results, we specify
the properties of the diagonal rates γ‖R as well as the weights PR . We choose

γ‖R = γ0 exp[−bR], PR = (1 − e−a)

(1 − e−aN)
exp[−aR], (74)

where R ∈ [0,N − 1], γ0 scale the rates, and the dimensionless constants b and a mea-
sure the exponential decay of the diagonal rates and their associated weights. The relevant
parameters of this set are

γp ≡ (P |γ‖), βp ≡ (P |γ 2
‖ ) − (P |γ‖)2

(P |γ‖)
, α ≡ a

b
. (75)

Here, γp can be interpreted as an average of the rates {γ‖R} over the set of probabilities
{PR}. In fact, γp = ∑

R PRγ‖R . Then, the rate βp correspond to the “normalized dispersion”
of the set {γ‖R}. On the other hand, we remark that the rates (74) lead to transient system
decay behaviors characterized by power law dependences (with exponent α) [53] allowing
to fit specific experimental situations [28–30].

In Fig. 1 we plot the transient decay behavior of the correlation

CXY (t, τ ) ≡ σx(t)σy(t + τ)/i, (76)

which from (68) and (70) can be written as

CXY (t, τ ) = {h⊥(τ )SZ(t) + f0(t, τ )[SZ(0) − S∞
Z ]}, (77)

1The density matrix dynamics corresponding to the evolution generated by (64) can be written as ρS(t) =
h‖(t)ρ+

S
(0) + h⊥(t)ρ−

S
(0) + [1 − h‖(t)]ρ∞

S
. This expression is used when deriving (70).
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Fig. 1 Transient decay behavior of CXY (t, τ ), (77). The parameters of the environment are b = 2.15,
a = αb, α = 1/2, N = 5, nth = 0, and γd/γp = 0.02. The dispersion rate results βp/γp = 0.4. The dot-
ted lines correspond to the QRT. From top to bottom, we set γpt = 0.25, 0.75, 2.5, and 250

with SZ(t) = S∞
Z + h‖(t)[SZ(0) − S∞

Z ]. We have chosen a zero temperature reservoir,
nth = 0, characterized by (74). As initial condition for the system, we take the pure state
|+〉. Thus, S∞

Z = −1 and SZ(0) = 1. Notice that the initial value of each plot describe the
decay of the initial condition from the upper to the lower state. In fact CXY (t,0) = SZ(t).

We also plotted the correlation behavior that follows by assuming valid the QRT,
i.e., (49b) with F(t, τ ) = 0. As can be seen from the graphics, the predictions of the QRT are
asymptotically valid in the stationary regime, where the function f0(t, τ ) vanish identically.
In fact, the correlation behavior predicted by the QRT follows from (77) after replacing
f0(t, τ ) → 0.

The transient deviations from the QRT are proportional to the departure of the system
decay behavior from an exponential one. This departure arises from the competence between
the exponential decay introduced by the rate γd and the non-Markovian effects induced by
the random rate dispersion βp . From (77) it is evident that the dispersive rate γd introduces
a global exponential decay. Thus, in general, by increasing this rate, the transient deviation
from the QRT are diminished. On the other hand, an increasing of βp implies a strong
deviation from an exponential decay.

6.1.2 Decay under the Action of an External Field

We consider the external Hamiltonian Hext = (�Ω/2)(σ †e−iωAt + σe+iωAt ). Then, the
Hamiltonian dynamics can be associated with a spin subject to a resonant external mag-
netic field [3] or with a two-level optical transition driven by a resonant laser field [4]. We
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notice that in an interaction representation with respect to �ωAσz/2, the system Hamiltonian
does not depends on time, HS → �Ωσx/2. In this case, the expectation values of the Pauli
matrices evolve as

dSX(t)

dt
= −

∫ t

0
dτΓX(t − τ)SX(τ), (78a)

dSY (t)

dt
= −ΩSZ(t) −

∫ t

0
dτ {ΓY (t − τ)SY (τ )

+ Υ (t − τ)[SZ(τ) − S∞
Z ]}, (78b)

dSZ(t)

dt
= ΩSY (t) +

∫ t

0
dτ {Υ (t − τ)SY (τ )

− ΓZ(t − τ)[SZ(τ) − S∞
Z ]}. (78c)

In Appendix B we give the exact expressions for the kernels ΓJ (t), j = x, y, z, and Υ (t),
as well as the expression for the non local superoperator K(u), (10). We remark that inde-
pendently of the set of rates {γ‖R} and weights {PR}, the kernels that define the evolution
equation (78) depend explicitly on the parameter Ω .

The normalized stationary state [see (48a)] corresponding to the evolution of each state
ρR(t), equation (61) with LH [•] → �Ω[σx,•]/2, reads

ρ∞
R = 1

2

{
I + γ‖R[Ωσy − γ⊥Rσz]

(1 + 2nth)[γ‖Rγ⊥R + Ω2]
}
. (79)

This expression explicitly depends on R if Ω �= 0. Then, even when the condition (48b) is
satisfied, when the system is subject to the action of the external field the QRT in not ful-
filled, even in the asymptotic regime. Consistently, the superoperator K(u) [see (B.1)] does
not satisfy (59). As the QRT is not fulfilled, the operators correlations must to be calculated
from the underlying microscopic Hamiltonian dynamics, i.e., from the expressions obtained
in Sect. 3.

In the next figures we characterize the correlation

C↑↓(t, τ ) ≡ σ †(t)σ (t + τ), (80)

= {Cxx(t, τ ) + Cyy(t, τ )}/4

−i{Cxy(t, τ ) − Cyx(t, τ )}/4

where Cjk(t, τ ) ≡ σj (t)σk(t + τ) are the correlations of the Pauli matrices. Each contribu-
tion Cjk(t, τ ) can be determine from (42) or equivalently (49b). On the other hand, if one
assume the validity of the QRT in the stationary regime, the correlations are defined by (49b)
with F(t, τ ) → 0.

In Fig. 2 we plot the stationary decay C↑↓(∞, τ )/C↑↓(∞,0), where C↑↓(∞,0) = [1 +
SZ(∞)]/2, for different values of the rate βp . We notice that both the decay behaviors and
the stationary values differ from the QRT predictions. As can be seen in the graphic, the
difference in the correlation behavior grows by increasing the dispersion rate βp .

In Fig. 3 we plot C↑↓(∞, τ ) for different values of the field intensity Ω . The deviations
with respect to the QRT are diminished by increasing Ω . Even more, in the limit of high
intensity, the dynamical deviations vanish.
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Fig. 2 Stationary decay behavior of C↑↓(t, τ ). From top to bottom, the parameters of the complex environ-
ment are b = 10.6, 6.05, and 2.15. In all cases we take a = αb, α = 1/2, N = 5, nth = 0, and γd/γp = 0.02.
The intensity is Ω/γp = 0.2. The dotted lines correspond to the QRT

Fig. 3 Stationary decay behavior of C↑↓(t, τ ) for different values of the intensity parameter. From top to
bottom, we take Ω/γp = 1 and 5. In both cases the parameters of the complex environment are b = 2.15,
a = αb, α = 1/2, N = 5, nth = 0, and γd/γp = 0.1. The dotted lines correspond to the decay predicted by
the QRT
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The characteristic behaviors shown in the two previous figures can be analytically char-
acterized by analyzing the asymptotic value of the correlation (80), i.e., from C↑↓(∞,∞) =
limτ→∞ C↑↓(t, τ ). It can be written as

C↑↓(∞,∞) = 1

(1 + 2nth)2

(
P

∣∣∣∣

[
Ωγ‖/2

γ‖γ⊥ + Ω2

]2)
, (81)

while by assuming valid the QRT we get

C
QRT
↑↓ (∞,∞) = 1

(1 + 2nth)2

(
P

∣∣∣∣
Ωγ‖/2

γ‖γ⊥ + Ω2

)2

. (82)

Thus, as a measure of the departure from the validity of the QRT in the stationary regime, we
introduce the quantity Ξ ≡ C↑↓(∞,∞) − C

QRT
↑↓ (∞,∞). A general characterization of this

object can be given in a small and high intensity limits. First, in the weak intensity regime,
Ω � {γ‖R}, we can approximate

Ξ ≈ Ω2/4

(1 + 2nth)2
[(P |γ −2

⊥ ) − (P |γ −1
⊥ )2] + O(Ω3), (83)

where (γ −1
⊥ )R = (γ‖R/2 + γd)

−1. Consistently, Ξ goes to zero in the limit of small inten-
sity Ω . On the other hand, the term in brackets is proportional to the dispersion of the rate
γ −1

⊥ , which in turn is proportional to the dispersion rate βp , (75), and “higher moments.”
Furthermore, by increasing the dispersive rate γd , each contribution in (83) diminish, which
in turn means that the predictions of the QRT approach the exact dynamics.

In the high intensity regime, Ω � {γ‖R} we get

Ξ ≈ Ω−2/4

(1 + 2nth)2
[(P |γ 2

‖ ) − (P |γ‖)2] + O(Ω−3). (84)

In this limit, Ξ is also proportional to the dispersion rate βp (bracket contribution). On
the other hand, this expression implies that by increasing Ω , the validity of the QRT is
asymptotically recuperated. This result is consistent with the fact that at high intensity values
[12] the stationary states ρ∞

R can be approximated by ρ∞
R ≈ I/2, which as expected do not

depend on index R. Furthermore, in this limit the microreversibility condition equation (59)
is also recovered.

6.2 Non-Diagonal Lindblad Rate Equation

Here, we analyze the case of a non-diagonal Lindblad rate equation that arise from an un-
derlying composite bipartite reservoir. For simplicity, we assume that the extra degrees of
freedom U are characterized by a bidimensional Hilbert space defined by the states |a〉 and
|b〉 (R = a, b), with HU = Ea|a〉〈a| + Eb|b〉〈b|. The two-level system S has eigenvectors
|±〉, with HS = �ωAσz/2, where σz is the z-Pauli matrix defined in the base |±〉. In an inter-
action with respect to HS + HU , the evolution of the joint density matrix ρSU (t) [see (24)]
reads

dρSU (t)

dt
= LSU [ρSU (t)], (85)

where the superoperator LSU is defined as

LSU = γaLa + γbLb + γabLab + γbaLba. (86)
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The set {γa, γb, γab, γba} are characteristic rates and each Lindblad contribution is defined
by

Li[•] = 1

2
([Vi,•V

†
i ] + [Vi•,V

†
i ]), (87)

with the operators

Va = σz ⊗ |a〉 〈a| , Vab = σz ⊗ |a〉 〈b| , (88a)

Vb = σz ⊗ |b〉 〈b| , Vba = σz ⊗ |b〉 〈a| . (88b)

From (85) it is possible to prove that the populations and coherences of U does not couples
between them. Consistently, the system density matrix evolution can be written as a Lindblad
rate equation

d

dt
ρa(t) = −γa[ρa(t) − σzρa(t)σz]

− γbaρa(t) + γabσzρb(t)σz, (89a)

d

dt
ρb(t) = −γb[ρb(t) − σzρb(t)σz]

− γabρb(t) + γbaσzρa(t)σz (89b)

with initial condition ρa(0) = PaρS(0) and ρb(0) = PbρS(0). The initial weights are defined
by Pa = 〈a|ρU(0)|a〉, and Pb = 〈b|ρU(0)|b〉, satisfying Pa + Pb = 1. Equations (89) lead to
the non-Markovian evolution dρS(t)/dt = ∫ t

0 dτK(t − τ)[ρS(τ )] with the superoperator

K[•] = k(u)(− • +σz • σz), (90)

defined by h(u) = 1/[u + k(u)], where

h(u) = u + Pa(γb + γab − γba) + Pb(γa + γba − γab)

γab(u + γb) + γba(u + γa) + (u + γa)(u + γb)
. (91)

The stationary state associated to (90) reads

ρ∞
S =

(〈+|ρS(0)|+〉 0
0 〈−|ρS(0)|−〉

)
. (92)

On the other hand, the kernel superoperator satisfies K = K# = K̃. Then, it is easy to demon-
strate that the conditions that guarantee microreversibility, (59), are satisfied. Nevertheless,
even in the stationary regime here the QRT is in general not valid.

In order to check the validity of the QRT, (48), first we calculate the stationary states
ρ∞

R ≡ limt→∞ ρR(t)/TrS[ρR(t)]. We get ρ∞
a = ρ∞

b = ρ∞
S . Therefore, the condition equa-

tion (48a) is satisfied. In order to check the stationary condition equation (48b), we obtain
the evolution of PR(t) = TrS[ρR(t)]. These objects define the populations of U . In fact,
PR(t) = 〈R|ρU(t)|R〉, where ρU(t) = TrS[ρSU (t)]. From (89) we get

d

dt
Pa(t) = −γbaPa(t) + γabPb(t), (93a)

d

dt
Pb(t) = −γabPb(t) + γbaPa(t), (93b)
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where the initial conditions read PR(0) = PR . The stationary values of these classical rate
equations read

P ∞
a = γab

γab + γba

, P ∞
b = γba

γab + γba

. (94)

Therefore, the QRT is valid in the stationary regime only when at the initial time the system
U is in its stationary state, i.e., Pa = P ∞

a and Pb = P ∞
b .

In order to check the previous result, we calculate the expectation values and stationary
correlators of the vector of Pauli operators A ≡ {σx, σy, σz, I }. We get

A(t) = T(t)A(0), (95a)

lim
t→∞O(t)A(t + τ) = T∞(τ ) lim

t→∞O(t)A(t), (95b)

where the matrix propagators read

T(t) = diag{h(t), h(t),1,1}, (96a)

T∞(t) = diag{h∞(t), h∞(t),1,1}. (96b)

Here, h∞(t) is defined as h(t) in (91) with the replacements Pa → P ∞
a and Pb → P ∞

b .
Consistently, when Pa = P ∞

a and Pb = P ∞
b , i.e., when at the initial time the total reservoir

begin in its stationary state, the QRT is valid in the stationary regime. On the other hand,
if the system Hamiltonian include a “hoping contribution,” HS → (�/2)[ωAσz + �σx], the
microreversibility condition equation (59) is broken and then, independently of the initial
weights, the QRT is invalidated at all times.

7 Summary and Conclusions

In this paper, we have characterized the operator correlations associated to open quan-
tum systems whose dissipative evolution can be described through a Lindblad rate equa-
tion. Independently of the underlying microscopic interaction, the final expressions, (33)
and (34), are written in terms of the propagator associated to the Lindblad rate evolu-
tion. The correlators adopt a simple form, (37) and (38), when written in terms of dual
superoperators, resembling the expressions corresponding to a standard Markovian environ-
ment.

It is usually understood that the quantum regression hypothesis is only valid for Markov-
ian dynamics. In contrast, here by using the previous results, we explored the possibility of
establishing a non-Markovian QRT. We have found that operator correlations may evolve
as the system expectation values only in a stationary regime. The equality of both decay
dynamics is valid when two conditions are satisfied. First, the normalized stationary states
must to be all the same, (48a), and secondly the initial weight of each auxiliary state must
to correspond to its stationary value, (48b). When any of these conditions is not valid, the
QRT is not fulfilled at any time.

We have also analyzed the conditions that guarantee the fulfillment of a detailed balance
condition, which for open quantum systems can be written as a symmetry property of the
stationary operators correlations, (52). While the fulfillment of this condition can in general
be expressed as a symmetry property of the Lindblad rate evolution, (57), from our analysis
we deduced that when the conditions that guarantee the validity of the (non-Markovian) QRT
in the stationary regime are valid, the microreversibility condition can be written in terms
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of the non-local superoperator that defines the system density matrix evolution, (59). As the
final constraint is independent of the underlying microscopic interaction, we concluded that
the microreversibility symmetry equation (59) provides a necessary condition for the validity
of the QRT (in the stationary regime) in non-Markovian (time-convolution) Lindblad-like
evolutions [39–51]. In contrast, for Markovian Lindblad evolutions, independently of the
fulfillment of the detailed balance condition, the (Markovian) QRT is always valid in both
the transient and stationary time regimes.

We exemplified our finding by analyzing the operator correlations of a two-level system
whose decay can be written in terms of different Lindblad rate equations. In contrast with
Markovian dynamics, we have showed that the validity of the (non-Markovian) QRT in the
stationary regime strongly depends on the system unitary evolution. In general, the depar-
ture from the predictions of the QRT not only implies differences in the correlation decay
behaviors, but also in their asymptotic values.

The present results provide a step forward in the understanding of open quantum systems
dynamics. In fact, our results provide general criteria for characterizing operator correlations
associated to a broad class of non-Markovian quantum master equations.

Acknowledgements The author thank financial support from CONICET, Argentina.

Appendix A: Generalized Born-Markov Approximation

Lindblad rate equations also arise when a generalized Born-Markov approximation applies
[52, 53]. In this situation an open system S interacts with a complex structured reservoir B

whose total microscopic dynamics is defined by the Hamiltonian

HT = HS + HB + HI . (A.1)

Here, HS and HB correspond to the system and bath Hamiltonians respectively. The contri-
bution HI describes their mutual interaction. The system density matrix follows after elim-
inating the environment degrees of freedom, ρS(t) = TrB{ρT (t)}, where the total density
matrix ρT (t) evolves as

dρT (t)

dt
= −i

�
[HT ,ρT (t)] ≡ LT [ρT (t)]. (A.2)

The generalized Born-Markov approximation applies to complex structured environ-
ments whose action over the system can be well approximated by a “direct sum” of sub-
reservoirs, each one being able to induce by itself a Markovian system dynamics. This as-
sumption applies, for example, in reservoirs characterized by a band structure of eigenvalues
[30]. The direct sum structure, in contrast with the standard Born-Markov approximation,
allows to write the total density matrix as a mixed state

ρT (t) =
∑

R

ρR(t) ⊗ ΞR

TrB{ΞR} , (A.3)

where ΞR is given by

ΞR ≡ ΠRρBΠR, (A.4)
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with ρB being the stationary state of the total bath, while the system states ρR(t) are de-
fined by

ρR(t) ≡ TrB{ΠRρT (t)ΠR}. (A.5)

Here, we have introduced a set of projectors ΠR which provides an orthogonal decom-
position of the unit operator [IB ] in the Hilbert space of the bath,

∑
R ΠR = IB , with

ΠRΠR′ = ΠRδR,R′ . Each projector define the Hilbert space associated to each Markov-
ian sub-environment. Therefore, they are diagonal in the eigenbasis of ρB ,which implies∑

R ΞR = ρB .
From (A.3), the system density matrix follows as

ρS(t) = TrB{ρT (t)} =
∑

R

ρR(t). (A.6)

The evolution of each state ρR(t), up to second order in the system-environment interaction
strength, from (A.2) can be written as

dρR(t)

dt
�

∫ ∞

0
dt ′ TrB{LT (t)LT (t ′)ρT (t)}, (A.7a)

=
∑

R′
L̂RR′ρR′(t) (A.7b)

where ρT (t) is defined by (A.3) and LT (t) is the total Liouville superoperator in an interac-
tion representation with respect to HS + HB . As demonstrated in Ref. [52, 53], the matrix
elements of the superoperator L̂ define a Lindblad rate equation, i.e., L̂ = L̂H + M̂, where
L̂H and M̂ are defined by (6) and (7) respectively.

For an uncorrelated initial state, ρT (0) = ρS(0) ⊗ ρB , the auxiliary states satisfies the
initial condition ρR(0) = PRρS(0), where the statistical weights are defined by

PR = TrB{ΞR} = TrB{ΠRρB} (A.8)

which consistently satisfy
∑

R PR = 1.

A.1 Operators correlations

As in Sect. 3, the microscopic derivation of the system operator correlations can also be done
in the context of the generalized Born-Markov approximation. First, the operator expectation
values read

A(t) = TrSB[A(t)ρT (0)], (A.9)

while the correlation functions follows from

O(t)A(t + τ) ≡ TrSB[O(t)A(t + τ)ρT (0)]. (A.10)

Both expressions only involve a trace over the complex environment B and the system S.
Here, the time dependence of the operators refers to a Heisenberg representation with respect
to the total Hamiltonian equation (A.1).

As before, we can trivially write the expectation values as an average over the solutions
corresponding to each state ρR(t),
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A(t) =
∑

R

TrS[AρR(t)] ≡
∑

R

A(t)R, (A.11)

= (
1|A(t)

)
. (A.12)

Furthermore, by expressing the initial system-reservoir state ρT (0) in terms of ρT (t), it is
possible to write the correlations as

O(t)A(t + τ) = TrS{A TrB [OSB(τ)]}, (A.13)

where the operator OSB(τ) satisfies

d

dτ
OSB(τ) = − i

�
[HT ,OSB(τ)], (A.14)

with OSB(τ)|τ=0 = ρT (t)O(0). This system-bath operator evolves as the total density ma-
trix, (A.2). On the other hand, (A.3) allows us to write the initial condition as OSB(τ)|τ=0 ≈∑

R[ρR(t)O(0)] ⊗ ΞR/TrB{ΞR}. Therefore, the reduced dynamics of OSB(τ) can also be
described through a Lindblad rate equation, delivering

TrB[OSB(τ)] =
∑

RR′
(eτ L̂)RR′ρR′(t)O(0), (A.15)

= (
1|eτ L̂|ρ(t)O(0)

)
. (A.16)

By introducing this expression in (A.13) one recover (33). Therefore, independently of the
underlying microscopic interaction that lead to the Lindblad rate equation, the operator cor-
relations assume the same structure when writing in term of the evolution generator L̂. The
same property is valid for higher operator correlations, (34).

Appendix B: Non-Markovian System Density Matrix Evolution

Here, we characterize the density matrix evolution corresponding to the example developed
in Sect. 6.1 with Ω �= 0. The superoperator K(u) [see (10)] associated to the evolution
equation (61) can be written as a non-diagonal non-local Lindblad-like superoperator

K(u)[•] = LH (u)[•] + 1

2

∑

αβ

aαβ(u)([Vα,•V
†
β ] + [Vα•,V

†
β ]), (B.1)

with the operators {Vα}α=1,2,3 = {σ,σ †, σz}. The Hamiltonian contribution reads

LH (u)[•] = −i
Υ (u)

2
[σx,•], (B.2)

and the matrix elements aαβ(u) are defined by

a11(u) = Π
eq
− ΓZ(u), (B.3a)

a22(u) = Π
eq
+ ΓZ(u), (B.3b)

a33(u) = 1

4
{ΓX(u) + ΓY (u) − ΓZ(u)}, (B.3c)
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a12(u) = a21(u) = −1

2
{ΓX(u) − ΓY (u)}, (B.3d)

a13(u) = a23(u) = −i
Υ (u)

4(1 + 2nth)
, (B.3e)

a31(u) = a32(u) = i
Υ (u)

4(1 + 2nth)
. (B.3f)

Without the external excitation, Ω = 0, the superoperator K(u) reduce to (64). The station-
ary state reads

ρ∞
S = 1

2

{
I + ΩΓZσy − [ΓY ΓZ + Υ (Υ + Ω)]σz

(1 + 2nth)[ΓY ΓZ + (Υ + Ω)2]
}
, (B.4)

with the notation ΓJ ≡ ΓJ (u)|u=0. Consistently, after some algebra, it is possible to write this
state as an addition of the corresponding Markovian stationary states, i.e., ρ∞

S = (P |ρ∞),
where ρ∞

R is defined by (79).
The matrix aαβ(u) and the Hamiltonian contribution LH (u) are defined in terms of the

kernels that define the evolution equation (78). For arbitrary set {γ‖R,PR}, they can be writ-
ten as

ΓX(u) = k⊥(u), (B.5a)

ΓY (u) = D

{
(u + C)

[
B

2
+ (u + γd)

]
+ Ω2

}
+ γd, (B.5b)

ΓZ(u) = 2D

{
(u + B)

[
C

2
+ (u + γd)

]
+ Ω2

}
, (B.5c)

Υ (u) = D(C − B)Ω, (B.5d)

where D denotes the function

D(u) = B(u)/2

[u + B(u)][u + B(u)/2 + γd ] + Ω2
. (B.6)

The extra function B and C are defined by

B(u) = (P |T (u)γ‖)
(P |T (u))

, C(u) = (P |T (u)γ 2
‖ )

(P |T (u)γ‖)
(B.7)

where we have introduced the function

TR(u) = 1/2

(u + γ‖R)(u + γ⊥R) + Ω2
. (B.8)
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